
4M25- Final Report

System Identification and Model-Based Reinforcement Learning for
Control of a Soft Robotic Manipulator

Candidate Number 5526D

Abstract

Soft robotics have a large variety of applications
as a result of their desirable properties. How-
ever, these properties give most soft robotics
infinite degrees of freedom and non-linearities
that can prove challenging for control methods.
This report presents a data-efficient method uti-
lizing reinforcement learning (RL) methods to
control a soft robotic pendulum. A neural net-
work is deployed to learn the characteristic of
the system from observation data. This then al-
lows quick reinforcement learning without the
need for high-volume testing on the physical
system.

Introduction

Background and Motivation

Bio-inspired softness in robotics can offer many
advantages over classical rigid designs, such as
the utilization of system dynamics for more energy-
efficient motion with minimal adverse disruption to
the environment. As a specific example, soft sur-
gical manipulators can be compliance matched to
abdominal viscera to minimize the risk of damage
to internal organs. This way the controller can work
with deflections of the manipulator by the environ-
ment to achieve efficient motion, such as winding
around obstacles.

The challenges of our soft robotic pendulum sys-
tem can be split into two different categories, both
stemming from the infinite degrees of freedom of a
continuously soft manipulator. First, redundancy in
the infinite state-space of the manipulator, and sen-
sitivity to external influences (namely, gravity and
contact forces), present difficulty in developing ana-
lytic kinematic models. Second, is the challenge of
designing generalizable controllers with limited in-
formation on both the state of the manipulator and
heterogeneity in the material properties of the ma-
nipulator and of the environment. We propose that
statistical learning approaches may serve as fruitful

research avenues for both problems.

Outline

A simple soft manipulator - a continuously soft rod
with actuation only at its base - has been developed
to explore these models. System identification is
first employed, with full information and then with
limited information, to derive the dynamics of the
manipulator. Then a controller is trained via model-
based RL with the objective of maintaining the ma-
nipulator in the upright position. This approach
circumvents the inefficiency of collecting data for
model-free reinforcement learning, by generating
simulated data with the learned dynamics. The goal
is that by training on simulated dynamics, reinforce-
ment can achieve faster than real-time training, in-
creasing the data efficiency. Both model-free and
model-based approaches are compared to test this.
Reinforcement learning is then also compared to
the efficacy of traditional linear-quadratic regulator
(LQR) control and proportional integral derivative
(PID) control. As an external influence and com-
parison, there is PILCO ((Deisenroth & Rasmussen,
2011)), a control learning scheme based on Gaus-
sian processes for system identification and policy
search for control between trials.

A multi-pendulum system was made in simulation
with torsional springs and dampers between rigid
members to model softness. The information avail-
able to the neural network used for system identifi-
cation was reduced to the angle at the base and the
position of the end-effector relative to the base.

The control method is summarised below:

• Create a soft robotic pendulum using Simulink

• Gather observation data via motor babbling

• Learn system dynamics via a Neural network

• Utilize reinforcement learning to train a controller
on the learned dynamics

1



• Compare model-free vs model-based approach

• Compare performance to more classical control
methods

• Obtain data from a real-world setup and apply RL
control methods

Methods

Simulation
To approximate a soft robot in simulation a pseudo
rigid body (PRB) simulation in MathWorks Simulink
(see Figure 1) was made to train our system before
access to physical data. This facilitated rapid itera-
tion of the design necessary for the reward function
and accuracy of the controller further down the line.

Figure 1: Pendulum system for N=4

The simulation of continuum manipulators is chal-
lenging due to the multiple degrees of freedom of
the system and the non-linearity associated with
soft materials. PRB models provide a numerical
approximation of these flexible elements through a
series of rigid links and rotational joints, for which
torsional springs and dampers at each joint capture
the material’s compliance (Venkiteswaran, Sikorski,
& Misra, 2019).

Each simulation outputs the tip coordinates (ex,ey),
tip rotation (er), base rotation φ ,and their first
derivatives for use in dynamics prediction. The
simulation has several tunable parameters as sum-
marised in Table 1.

Parameter Description Unit
L Pendulum length m
n Number of rigid links −
m Pendulum mass g
W Link width m
D Link depth m
ζ Damping constant Nm/(deg/s)
k Spring constant Nm/deg

Table 1: Simscape simulation parameters

System Identification

To learn the dynamics of the system, using the
same method when observing real data, the state
of the simulation was measured with random torque
inputs (motor babbling). The variables recorded
are the base angle (φ), the end effector angle (θ),
and the position of the tip relative to the base
(ex,ey). The full state vector is x = [q, q̇]T , where
q = [φ,θ,ex,ey]. The dynamics model takes the
state and the torque (τ) as inputs, and returns the
state at the next time step: f(x(t),τ(t)) = x(t +1).

Data was gathered by simulating the pendulum
movements with a small time step, dt = 0.01, mea-
suring the pendulum positions at each step, and
then using numerical differentiation to get the first
derivative of each observed variable. Under the as-
sumption of the Markov Property (see equation 1),
a neural network with 3 hidden layers was employed
to learn the dynamics, each with 16 neurons. Mul-
tiple layers help approximate non-linear functions
more accurately and efficiently.

p(st+1|st ,τt) (1)

Motor babbling ran for 60 trials, each lasting 5 sec-
onds to give 499 data points per trial. This gave 5
minutes of training data for our system. The model
is reset between trials to prevent excessive motor
velocities; the initialization torque is drawn from a
normal distribution for the same reason. Data was
predominantly gathered in the same space as that
which the pendulum exists during the control task
i.e. near the top equilibrium.

Reinforcement Learning

In order to balance the system in an upright posi-
tion a controller is trained, using either the simula-
tion system or using the neural network previously
trained.

This was done using the Deep Q-network algorithm
which learns an optimal policy for an environment.
This policy determines discrete actions by using
a deep neural network to approximate the optimal
action-value function. As such DQN is suitable for
the non-linear complex model we are attempting to
simulate. DQN learns from raw sensory inputs mak-
ing the process more generalizable across different
tasks. Hence if it works to balance and control the
pendulum vertically it should be applicable to any
less complex tasks.

The agent’s action space is defined as the contin-
uous space τ ∈ [−τmax,τmax] acting on the motor
where τmax is the maximum allowed torque from the

2



system. The action is selected according to a policy
pi(τ,s), defined as:

pi(τ,s) = p(τt = τ|st-1 = s) (2)

In this equation, pi(τ,s) acts as a lookup table of
states to actions. An action is selected according to

pi(τ,s)

{
1 if τ = argmaxτ[Q̃(τ,s;ψ)]

0 otherwise
(3)

In this Q̃ is the critic: an approximation of the Q-
value function. If the agent has access to the pre-
cise Q-value function then the agent will receive the
maximum reward. Ψ is the parameter that improves
the critic’s approximation. In DQN-learning critic im-
provement is achieved using a neural network to
minimize mean squared error.

The reward function given to the agent is shown in
equations 4 and 5.

r ∝ min(max(cos(θ)/|sin(θ),50),−50)+ r∗t (4)

r∗t ∝

{
1 if θt < ε

r∗t-1e-kt otherwise
(5)

As visualised in figure 2 2, the reward increases as
the pole reaches the upright position. A bonus r∗ is
given if the pendulum end-effector is in the small re-
gion at the top. This small addition provides a rapid
reward increase when the system reaches a pre-
cise position. This helps ensure the pendulum gets
as close to the desired position without reaching a
minima only close to the target. The parameter ε

tunes the precision of this reward and k is the de-
cay rate to prevent undesired spinning behavior.

Figure 2: Reward function for DQN

Reinforcement Learning- Model Based
Utilizing the data from the trained neural network, a
model-based approach can be taken with the goal
of achieving similar performance with less training
on the actual system. This was first done with the
original network from system identification however
later developments saw an improvement with using
DQN-MBPO (Model based policy optimization). In
the latter case, a base agent DQN explores the en-
vironment, optimizing the critic for value function ap-
proximation, while the MBPO agent uses a neural
network for system identification. The architecture
of this network is almost identical to the one estab-
lished in ’system identification’.

The controller was trained with 9 simulated rollouts
for every 1 real experience with the Simulink model.
This regime helps reduce model bias as it is recti-
fied by the inclusion of real Simulink experiences.
Thus similar performance should be achieved with
fewer episodes than the model-free approach.

Results

System Identification
As seen in Figure 3, the neural network accurately
models the system dynamics. By minimizing the
mean squared error (MSE) between the predicted
next state and the actual next state the network
achieved an error of ≈ 3e− 9. This performance
is reflected in the rollout seen in Figure 3.

Figure 3: System identification compared to simulation rollout

Reinforcement Learning-Model Free
The model-free controller proved to successfully
balance the pole reaching the asymptotic reward in
approximately 150 episodes of training, equivalent
to around 4 hours of simulated time. This can be
seen by the blue line in Figure 4. This approach op-
timizes the controller with direct observations of the
system.

3



Figure 4: Model-Free vs Model-Based training episodes

Typically the pendulum will reach steady state os-
cillatory behavior after 10 seconds. After swinging
up the rod remained within a standard deviation of
0.2 radians from the upright position for an arbitrary
time. To help with visualization of the motion Figure
5 shows the swing up and subsequent movement of
the pendulum as it is balanced.

Model-Based reinforcement learning

Now utilizing the dynamics from system identifica-
tion the model-based controller was trained on a
combination of real and simulated experiences. The
agent reached asymptotic performance in approxi-
mately 100 episodes of training as seen by the or-
ange line in Figure 4 ( 2 hours 45 minutes of sim-
ulated time). As seen in Figure 6, the final perfor-
mance is near-identical to the performance of the
model-free controller, reaching a standard deviation
of 0.2 radians from the upright position. Note that
the time-averaging smooths rapid changes in er-
ror, thereby masking small differences in the swing-
up velocity, where the model free-controller shows
a slight advantage. Unlike with a purely system
identification-driven controller the model-based ap-
proach has minimal model bias. Therefore this
method offers savings in the overall time interacting
with the environment but with an increased compu-
tational cost.

Figure 5: Time course of compliant rod swing under model-free RL
control using constant curvature approximation

Figure 6: Performance of model-free and model-based RL trained
controllers

Classical control methods
To establish the success of our controller we com-
pared the performance with the alternate methods
LQR and PID. These control methods, while only
partially applicable to our problem, can provide
some benchmarks. LQR should be optimal for a
known system with limited energy input and PID
without torque limits should be similarly quick.

4



LQR Linear Quadratic Regulator, as established
in lectures, can be used for multi-link pendulum
problems. In an attempt to test the feasibility of our
problem, the system was tested against the lab pro-
vided by the lectures. By adjusting the initial start-
ing position, target angles, and torque the method
converges to a steady-state upright position using
minimal energy input. Figure 7 shows how the LQR
method compares with PID (discussed later). For
this method, the pendulum starts closer to the fi-
nal position as convergance becomes more difficult
as the distance from the target increases for a non-
linear system. This is because the method requires
linearization about the state space and hence be-
comes less accurate for large jumps.

While the controller is robust on a fully known
model, it is not suitable for our application for multi-
ple reasons. It requires a full state-space model of
the system (matrices A, B, C, D) so it will not per-
form simply with observed data of motor babbling
with a physical system.The LQR method solves the
algebraic Riccati equation associated with the lin-
ear quadratic cost function (using matrices Q and
R) so a suitable cost function must be chosen. In
the virtual lab provided the steady state associated
with target torque and joint angles is coupled such
that if incorrectly set can cause odd convergence
and high torque behavior.

LQR may still be useful in conjunction with system
identification. If we were able to match observed
data to the parameters of a model and accurately
estimate the system then an LQR controller could
be derived for this system and applied to the true
model.

Figure 7: Error of |θ| for LQR and PID

PID The Proportional Integral Derivative control
method is applicable to both linear and non-linear
systems and worked with some success on our

system. As the model is non-linear parameter op-
timization is required. As a result, optimal PID
parameters change with input and target state.
Furthermore, adding more links to the system in-
creases the overall complexity making PID control
hypersensitive to its parameters. The performance
of PID can be seen in figure 7. However, a very
high torque limit was given to the controller mean-
ing it naturally moved the pendulum upright much
quicker than the reinforcement-based methods.

For our application, PID parameters could be op-
timized for the model obtained from system identi-
fication and then applied to the real system. This
enabled testing on the actual system to be avoided,
whilst still yielding reasonable results, albeit to a lim-
ited degree.

Future Work

To coincide with the simulated system a physical
model was made. Figure 8 shows the final design
of the soft robot manipulator. The flexible beam is
mounted to the drive shaft using a single 3D printed
piece. This was fitted to a high precision to reduce
any backlash introducing noise to the system. The
beam itself is made from a flexible TPU which was
iteratively designed to provide sufficient flex with the
end mass was attached. A long and deep beam
promotes bending in the minor axis removing per-
turbation in the unobserved plane (when using com-
puter vision). The system itself also works with

Figure 8: CAD Design

affine camera projection as all movement is within
a single plane, this made computer vision an ideal
method for determining the end-effector position. In
the context of surgical manipulators, an IMU may be
preferred.

5



Hardware Control

The system utilizes VEX hardware which can pro-
vide direct torque and motor position values to the
controller. This enabled us to synchronize the time
series data of motor position to the pixel coordinates
of the pendulum. The controller was designed in
Simulink and deployed on the VEX hardware via
code generation. While the program is running,
base angle phi is measured using the built-in rotary
encoder.

Computer Vision

To obtain the end-effector position computer vision
tracking was used. This was implemented on a
raspberry pi module to remove possible sources of
lag. To extract the end-effector co-ordinates (x,y)
and angle θ a blue dot at the end of the pendulum
was tracked using OpenCV dictated by Algorithm 1.

Algorithm 1 Extracting x,y coordinates

1: Capture camera frame
2: Extract regions within the specified colour range

to form a binary image
3: Apply a 3x3 Gaussian Blur
4: Extract Contours
5: Sort contours by area size, and select the

largest as the tracked object
6: Compute the center of the region to yield x,y

coordinates in pixels.

Figure 9 shows object detection in practice. The
data is time-stamped which allows synchronizing
with the MATLAB readings to train system dynam-
ics.

Figure 9: End-effector co-ordinate extraction with camera view over-
lay

Conclusion
Overall the reinforcement learning methods pro-
posed provided an interesting insight into the pos-
sible control of soft robotics and performed well
in balancing the system with limited torque. The
model-based approach successfully converged its
performance in fewer episodes than model-free RL
showing the benefits of this method. There remains
much potential for these models to be optimized to
achieve a very high level of performance – some-
thing we were unable to see due to the initial short-
ened deadline of the 21st, which was extended too
late for us to complete further work.

While not directly comparable with PILCO, it is
worth noting some differences in observations.
PILCO took less than 90 seconds of real experi-
ence to learn to stabilize the double pendulum cart
model, with computation time between trials. While
our method requires more time on the system, there
is potential to reach values closer to this. A deeper
and longer-trained neural network paired with in-
creased simulation training time per episode would
allow rapid convergance of the DQN algorithm on
real simulation data without introducing significant
model bias.

The generalizability of RL also makes it a use-
ful solution in potentially more complex situations
where traditional PID control would be much less
suited. Adjustments to the reward function can also
promote certain movement sequences and provide
constraints to the system.

References

Deisenroth, M., & Rasmussen, C. (2011, 01). Pilco:
A model-based and data-efficient approach
to policy search. , 465-472. Retrieved from
https://mlg.eng.cam.ac.uk/pub/pdf/DeiRas11.pdf

Venkiteswaran, V. K., Sikorski, J., & Misra,
S. (2019). Shape and contact force es-
timation of continuum manipulators using
pseudo rigid body models. Mechanism
and Machine Theory , 139, 34-45. doi:
https://doi.org/10.1016/j.mechmachtheory.2019.04.008

6


